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Kabuki syndrome is a Mendelian intellectual disability syndrome
caused by mutations in either of two genes (KMT2D and KDM6A)
involved in chromatin accessibility. We previously showed that an
agent that promotes chromatin opening, the histone deacetylase
inhibitor (HDACi) AR-42, ameliorates the deficiency of adult neuro-
genesis in the granule cell layer of the dentate gyrus and rescues
hippocampal memory defects in a mouse model of Kabuki syndrome
(Kmt2d+/βGeo). Unlike a drug, a dietary intervention could be quickly
transitioned to the clinic. Therefore, we have explored whether
treatment with a ketogenic diet could lead to a similar rescue
through increased amounts of beta-hydroxybutyrate, an endoge-
nous HDACi. Here, we report that a ketogenic diet in Kmt2d+/βGeo

mice modulates H3ac and H3K4me3 in the granule cell layer, with
concomitant rescue of both the neurogenesis defect and hippocam-
pal memory abnormalities seen in Kmt2d+/βGeo mice; similar effects
on neurogenesis were observed on exogenous administration of
beta-hydroxybutyrate. These data suggest that dietary modulation
of epigenetic modifications through elevation of beta-hydroxybuty-
rate may provide a feasible strategy to treat the intellectual disability
seen in Kabuki syndrome and related disorders.

epigenetics | histone machinery | adult neurogenesis | intellectual
disability | ketone bodies

Kabuki syndrome [KS; Mendelian Inheritance in Man (MIM)
147920, 300867] is a monogenic disorder, the manifestations of

which include intellectual disability, postnatal growth retardation,
immunological dysfunction, and characteristic facial features. Mu-
tations in either lysine (K)-specific methyltransferase 2D (KMT2D)
or lysine (K)-specific demethylase 6A (KDM6A) are known to lead
to KS (1–3). Interestingly, each of these genes plays an independent
role in chromatin opening, a process essential for transcription, as
KMT2D encodes a lysine methyltransferase that adds a mark as-
sociated with open chromatin (histone 3, lysine 4 trimethylation;
H3K4me3), whereas KDM6A encodes a histone demethylase that
removes a mark associated with closed chromatin (histone 3, lysine
27 trimethylation; H3K27me3). If a deficiency of chromatin opening
plays a role in KS pathogenesis, agents that promote open chro-
matin states, such as histone deacetylase inhibitors (HDACis), could
ameliorate ongoing disease progression (4).
Previously, in a mouse model of KS (Kmt2d+/βGeo), we observed

a deficiency of adult neurogenesis, a dynamic process during adult
life (5), in association with hippocampal memory deficits (6). After
2 wk of treatment with the HDACi AR-42, an antineoplastic agent,
we observed normalization of these phenotypes (6) (Fig. S1).
However, transitioning an antineoplastic drug to patients with a
nonlethal intellectual disability disorder may prove problematic.
Recently, beta-hydroxybutyrate (BHB), a ketone body that is the
natural end product of hepatic fatty acid beta oxidation, has been
shown to have HDACi activity (7). Because BHB is actively
transported into the central nervous system during ketosis (8), and
furthermore has been shown to directly enter the hippocampus (9),

it should be readily available to modulate histone modifications in
relevant cells (neurons); this would be expected to ameliorate the
deficiency of adult neurogenesis in Kmt2d+/βGeo mice (6). A dietary
intervention could be quickly transitioned to the clinic and is un-
likely to have major adverse effects.
Here, we demonstrate that treatment with a ketogenic diet (KD)

for 2 wk normalizes the global histone modification state and
corrects the deficiency of neurogenesis seen in the granule cell
layer (GCL) of the dentate gyrus (DG). This dietary change also
rescues the hippocampal memory defects in Kmt2d+/βGeo mice.
Furthermore, administration of exogenous BHB also rescues the
neurogenesis defect in Kmt2d+/βGeo mice, suggesting that the in-
creased levels of BHB play a major role in the observed therapeutic
effect of the KD. Our data show that some of the neurological
effects of a debilitating germline mutation can be offset by dietary
modification of the epigenome and suggest a mechanistic basis of
the KD, a widely used therapeutic strategy in clinical medicine.

Results
Phenotype of the Kmt2d+/βGeo Mice. Our mouse model of KS
(Kmt2d+/βGeo) demonstrates many features seen in patients with
this disorder, including similar craniofacial abnormalities (6) and
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postnatal growth retardation (Fig. 1A). In addition, Kmt2d+/βGeo

mice demonstrate a deficiency of adult neurogenesis (Fig. 1B), as
well as hippocampal memory defects (Fig. 1C). All these features are
observed in both mixed (6) and congenic C57BL/6J (Fig. 1 A–C)
backgrounds (>10 generations). Hippocampal gene expression pro-
filing in Kmt2d+/βGeo and Kmt2d+/+ littermates using microarrays
reveals that differentially expressed genes tend to be down-regulated
in Kmt2d+/βGeo compared with in Kmt2d+/+ littermates, as would be
expected, as the Kmt2d enzyme promotes transcriptional expression.
Specifically, we find that 18 of 24 significantly differentially expressed
probe-sets [false discovery rate (FDR) < 10%; n = 6–7 mice per
group] are down-regulated in Kmt2d+/βGeo mice (Fig. 1D). This shift
toward down-regulation in Kmt2d+/βGeo mice is also present in the
top 1,000 genes ranked by fold change (FC) (64% are down-regu-
lated; P < 2.2e−16; Fig. S2). However, gene-specific changes in
Kmt2d+/βGeo mice are relatively subtle: Only 52 genes have an ab-
solute log2 FC larger than 0.5. Note that Kmt2d itself shows the most
highly significantly differentially expressed probe-set (Fig. 1D). As
expected, the site of hybridization for the particular Kmt2d probe-set
that shows differential expression between genotypes covers the
mRNA that is missing in the Kmt2d+/βGeo mice (Fig. S3).

In Vitro and in Vivo Elevation of BHB. According to the reported
histone deacetylase inhibitory activity of BHB (7), we hypothesized
that BHB could be used as a therapy for KS (Fig. S4), given the
interdependence of histone acetylation and H3K4me3 (10). First, we
confirmed that BHB had HDACi activity. Using an in vitro epige-
netic reporter allele assay to quantify the activity of the H3K4me3
and H4ac machinery in HEK293 cells (6), we observed a dose-de-
pendent increase of reporter activity with increasing amounts
of BHB (Fig. 2A). To increase BHB levels in vivo, we placed

Kmt2d+/βGeo and Kmt2d+/+ mice on a KD, using a regimen fre-
quently used in human treatment (4:1 fat to protein ratio) (11). We
observed a significant increase in urine BHB from KD-treated mice
compared with their regular diet-treated counterparts (Fig. 2B);
this effect was greatly accentuated in Kmt2d+/βGeo animals com-
pared to Kmt2d+/+ littermates (Fig. 2C). Elevation of BHB was
also observed in serum and brain tissue of Kmt2d+/βGeo mice
in response to the KD (Fig. S5). Although structural renal ab-
normalities are common in patients with KS, renal function is
usually normal (12), and Kmt2d+/βGeo mice also have normal
renal function (Fig. S6). In contrast, levels of acetoacetate
(AcAc) did not show a corresponding elevation, leading to an
increased BHB/AcAc ratio in the KD-treated Kmt2d+/βGeo mice,
indicating a disproportionate increase in BHB compared with
KD-treated Kmt2d+/+ littermates (Fig. 2D). This increase in the
BHB/AcAc ratio was not observed in a mouse model of Rubinstein-
Taybi syndrome (CREB-binding protein, Crebbp+/−; 13; MIM
180849, 613684; Fig. 2D and Fig. S7), another genetically im-
posed deficiency of open chromatin marks (14), suggesting that
the metabolic alterations in our Kmt2d+/βGeo mice are unlikely to
be secondary to a general loss of open chromatin modifications
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Fig. 1. Phenotypes observed in fully backcrossed (C57BL/6J) Kmt2d+/βGeo mice.
(A) Kmt2d+/βGeo mice weigh significantly less than age-matched Kmt2d+/+ mice at
3 mo, and this weight difference becomes more pronounced at 12 mo (n = 4–10
per group, both sexes). (B) Kmt2d+/βGeo mice demonstrate significantly fewer
(P < 0.005) EdU+ cells in the GCL of the DG compared with Kmt2d+/+ littermates,
following an EdU proliferation staining assay (n = 4–7 per group). (C) Kmt2d+/βGeo

mice (yellow) demonstrate a significant decrease (P < 0.005) in platform zone
crosses during a MWM probe trial compared with Kmt2d+/+ (blue) littermates
(n = 23–27 per group). (D) Gene expression microarray from hippocampus reveals
18 significantly down-regulated probe-sets between Kmt2d+/βGeo and Kmt2d+/+

littermates, as well as six that were significantly up-regulated (n = 6–7 per group;
FDR < 10%). *P < 0.05; **P < 0.01; †P < 0.005; ††P < 0.001.
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Fig. 2. BHB is an endogenous histone deacetylase inhibitor that is elevated in
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0.001) increase of urine BHB compared with standard diet–treated controls (n =
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compared with Kmt2d+/+ controls, suggesting Kmt2d+/βGeo mice are predisposed
to preferentially increased BHB levels during ketosis (n = 4–12 per group). (D) GC-
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fact a result of an altered BHB/AcAc ratio, which is significantly elevated in KD-
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and not Crebbp+/− mice maintain relatively higher NADH levels during ketosis
(Figs. S7 and S8). *P < 0.05; **P < 0.01; †P < 0.005; ††P < 0.001.
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(15, 16). The ratio of BHB to AcAc is governed by the cellular
NADH/NAD+ ratio (Fig. 2E). Serum lactate/pyruvate ratio is also
sensitive to the NADH/NAD+ ratio (Fig. S8A), and is concordantly
skewed in Kmt2d+/βGeo mice on a KD (Fig. 2E and Fig. S8B). Taken
together, our data suggest that an underlying alteration in the
NADH/NAD+ ratio may potentiate a therapeutic strategy for KS
based on enhanced BHB production in response to a KD.

In Vivo Rescue of Global Histone and Gene Expression Abnormalities.
We next explored the effects of in vivo treatment on global chro-
matin states in the GCL of the DG after 2 wk of a KD. Kmt2d+/βGeo

mice on the KD for 2 wk had increased levels of H3K4me3 com-
pared to Kmt2d+/βGeo mice on a standard diet (Fig. 3 A and B). In
addition, Kmt2d+/βGeo mice on the KD for 2 wk also showed global
normalization of H3ac levels in the GCL of the DG (Fig. 3 C
andD). Because of the ability of KD treatment to increase marks of
open chromatin in vivo, we next assessed the effects of treatment on
the 5 genes that showed the most significant down-regulation in the
hippocampus of Kmt2d+/βGeo mice. As expected, the mRNA
encoding Kmt2d did not increase in Kmt2d+/βGeo mice on a KD, as
the low expression was based on structural allele disruption (Fig.
3E). In contrast, 3 of the 4 other genes we assayed showed a sig-
nificant increase in transcript expression in response to a KD,
with 2 showing full normalization (Fig. 3F). One of these, Glucagon-
like peptide-1 receptor (Glp1r), encodes a protein localized to
neuronal synapses. As in the Kmt2d+/βGeo mice (6),Glp1r-targeted
animals show reversible hippocampal memory defects (17).

The KD Rescues Neurogenesis Defects in Kmt2d+/βGeo Mice. We next
assessed the effect of the KD on neurogenesis by two independent
markers: quantification of either 5-ethynyl-2′-deoxyuridine–positive
(EdU+) or doublecortin-positive (DCX+) cells in the GCL of the
DG. Counting EdU+ cells directly after injection is informative re-
garding any proliferative defects of this cellular niche (18). In con-
trast, this metric reflects abnormalities in neuronal survival when
estimated after a 30-d delay (18). We counted the number of EdU+

cells in the GCL both immediately after a course of EdU injections or
30 d later; both measures showed a significant increase in Kmt2d+/βGeo

mice on the KD compared with Kmt2d+/βGeo mice on a regular diet
(Fig. 4A). Upon quantification of the DCX+ fraction of the GCL
(a marker of adult neurogenesis we had previously shown was de-
creased in Kmt2d+/βGeo mice) (6), we found a significant increase in
Kmt2d+/βGeo mice on the KD compared with mice on a standard diet,
with no significant difference compared with KD-treated wild-type
(Kmt2d+/+) littermates (Fig. 4 B and C).

Exogenous BHB Rescues the Neurogenesis Defect in Kmt2d+/βGeo Mice.
To determine the sufficiency of BHB to rescue the neurogenesis
defect in Kmt2d+/βGeo mice, we treated mice with exogenous BHB.
A once-daily i.p. injection of 5 mM/kg/d BHB for 2 wk led to peak
urine levels of BHB comparable to levels seen in mice on the KD
(Fig. S9A); however, given the short half-life of BHB (1–2 h) (19),
the overall daily exposure to BHB after a single injection was
much less than with the KD (Fig. S9B). Despite this, BHB injec-
tions led to a significant increase in EdU+ cells in the GCL of the
DG (Fig. S9C), although not to the same magnitude as in the mice
on a KD for 2 wk (Fig. 4A). As a consequence, to approximate the
BHB exposure during a KD, we used a combination strategy with
delivery of BHB by osmotic pump (Fig. S9D) plus three daily IP
injections (5 mM/kg BHB) for 2 wk; this strategy achieved daily
BHB exposure comparable to KD treatment (Fig. S9E) and
resulted in a significant increase in neurogenesis, as measured by
the number of EdU+ cells in the GCL of the DG in Kmt2d+/βGeo

compared with vehicle-treated Kmt2d+/βGeo mice (Fig. S9F), which
closely mirrored the neurogenesis proliferation rescue seen after
treatment with the KD (Fig. 4A). Similarly, a quantification of
DCX+ cells in the GCL showed a dose-dependent normalization
with full recovery at the higher dose level (Fig. S9 G and H).

A KD Rescues Hippocampal Memory Defects in Kmt2d+/βGeo Mice.
Finally we asked whether KD treatment would rescue the hippo-
campal memory defects seen in Kmt2d+/βGeo mice. The probe trial
of a Morris water maze (MWM) assay is a measure previously
shown to be particularly sensitive for detecting a disruption of adult
neurogenesis (20). We previously demonstrated deficiencies in
MWM performance for Kmt2d+/βGeo mice (6) (Fig. 1C). After 2 wk
of KD treatment, Kmt2d+/βGeo mice showed a significant increase in
the number of platform zone crossings (Fig. 4D) compared with
untreated Kmt2d+/βGeo mice.

Discussion
Although BHB has previously been shown to have HDACi ac-
tivity (7, 21), the potential for therapeutic application remains
speculative. Here, we show that therapeutically relevant levels of
BHB are achieved with a KD modeled on protocols that are used
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and sustainable in humans (22, 23). In addition, we demonstrate
a therapeutic rescue of disease markers in a genetic disorder by
taking advantage of the BHB elevation that accompanies the KD.
Our findings that exogenous BHB treatment lead to similar

effects on neurogenesis as the KD support the hypothesis that

BHB contributes significantly to the therapeutic effect. In our
previous study (6), the HDACi AR-42 led to improved perfor-
mance in the probe trial of the MWM for both Kmt2d+/βGeo

and Kmt2d+/+ mice (genotype-independent improvement). In con-
trast, KD treatment only led to improvement in Kmt2d+/βGeo mice
(genotype-dependent improvement). This discrepancy may relate
to the fact that AR-42 acts as an HDACi but also affects the ex-
pression of histone demethylases (24), resulting in increased po-
tency but less specificity. Alternatively, because the levels of BHB
appear to be higher in Kmt2d+/βGeo mice on the KD, the physio-
logical levels of BHB might be unable to reach levels in Kmt2d+/+

mice high enough to make drastic changes on chromatin.
Although we cannot exclude a contribution from other bio-

chemical actions of BHB such as direct butyrylation of histone tails
(25) or the effects of BHB on mitochondrial respiration, synaptic
physiology (26), or cellular oxidative stress (7), the concordance of
therapeutic effects with those observed on administration of an
HDACi (6) provides strong, albeit correlative, evidence that the
BHB acts, at least in part, through modulation of histone marks.
The global epigenetic abnormalities seen in Kmt2d+/βGeo mice
occur in association with altered expression of genes, some of
which (such as Glp1r) lead to overlapping neurodevelopmental
abnormalities when targeted in mice (17). Interestingly, Glp1r and
several of the genes most highly differentially expressed demon-
strate normalization on the KD. As with other disorders associated
with primary perturbation of epigenetic factors, it is not possible to
attribute specific aspects of the disease phenotype to specific genes
or pathways; rather, it is likely that phenotypic consequences in-
tegrate the combined action of many genes that are dysregulated
on attenuation of KMT2D function.
In addition to the effects seen on hippocampal function and mor-

phology, we also uncovered a metabolic phenotype in Kmt2d+/βGeo

mice, which leads to both increased BHB/AcAc and lactate/pyruvate
ratios during ketosis; an increased NADH/NAD+ ratio could ex-
plain both observations. This increased NADH/NAD+ ratio may
relate to a previously described propensity of Kmt2d+/βGeo mice
toward biochemical processes predicted to produce NADH, in-
cluding beta-oxidation, and a resistance to high-fat-diet–induced
obesity (27). If this exaggerated BHB elevation holds true in pa-
tients with KS, the KD may be a particularly effective treatment
strategy for this patient population; however, this remains to be
demonstrated. Alterations of the NADH/NAD+ ratio could also
affect chromatin structure through the action of sirtuins, a class of
HDACs that are known to be NAD+ dependent (28). Advocates of
individualized medicine have predicted therapeutic benefit of tar-
geted dietary interventions, although currently there are few robust
examples (29–31). This work serves as a proof-of-principle that
dietary manipulation may be a feasible strategy for KS and suggests
a possible mechanism of action of the previously observed thera-
peutic benefits of the KD for intractable seizure disorder (22, 23).

Materials and Methods
Study Design. The purpose of this study was to test the hypothesis that the KD
could be used as a therapeutic strategy in a mouse model of KS. At least four
biological replicates were used for each biochemical analysis. Data collection
was performed for a predetermined period, as dictated by literature-based or
core facility-based standards, and no exclusion criteria were applied. All
analyses were performed by examiners blinded to genotype and/or treat-
ment group. For drug treatments, mice were randomly assigned to treatment
groups with approximately equivalent numbers in each group. In box and
whisker plots, whiskers extend 1.5 times the interquartile range, as is the
default in the R programming language; circles indicate data points outside
this range. All data points were used in statistical analysis.

Mice and Dietary Manipulations. Our mouse model, Kmt2d+/βGeo, also known
as Mll2Gt(RRt024)Byg, was generated by BayGenomics through the insertion of
a gene trap vector. The KD [4:1 (fat:protein) ratio, F6689 Rodent Diet, Ke-
togenic, Fat:Paste] paste was acquired from Bio-Serv. Mice were given 2 wk free
(ad libitum) access to KD paste as a sole food source. Paste was replaced several
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Fig. 4. KD treatment rescues the neurogenesis and hippocampal memory de-
fects in Kmt2d+/βGeo mice. (A) Kmt2d+/βGeo mice demonstrate significantly fewer
EdU+ cells in the GCL of the DG, both immediately after 7 d of EdU injection
(proliferation, P < 0.001) or 30 d after start of EdU injection (survival, P < 0.001).
Both measures increase significantly (P < 0.001; P < 0.05) in Kmt2d+/βGeo mice on
the KD for 2 wk (n = 5–9, proliferation; n = 8–15, survival). (B and C) Kmt2d+/βGeo

mice on a standard diet demonstrate a significantly smaller DCX+ cell population
in the GCL of the DG (P < 0.001) compared with Kmt2d+/+ littermates. This ratio
significantly increases (P < 0.01) in Kmt2d+/βGeo mice after 2 wk of a KD (n = 7–12
per group). (D) The number of platform crossings during the probe trial portion
of the MWM increased significantly (P < 0.05) in Kmt2d+/βGeo mice on the KD
compared with a standard diet. Compared with KD-treated Kmt2d+/+ mice,
KD-treated Kmt2d+/βGeo mice showed no significant difference in platform
crossings (P = 0.239; n = 19–32 per group). Kmt2d+/βGeo mice also took longer
to reach the platform during the 5-d hidden platform testing of the MWM
compared with Kmt2d+/+ controls (increased escape latency); however, KD
treatment did not appear to have a significant effect, as assayed by repeated-
measures ANOVA (Fig. S10A). Flag testing showed no significant differences
between treatment or genotype for platform latency (Fig. S10B). Further
control tests for strength, activity, and anxiety-like behaviors (grip strength
and open field testing) were unaffected by the genotype (Fig. S10 C and D).
*P < 0.05; **P < 0.01; †P < 0.005; ††P < 0.001. (Scale bar: 50 μm.)
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times per week. During MWM testing, given the length of testing (more than a
week), we treated for 3 wk. Crebbp+/−, also known as Crebbptm1Dli (13), mice
were acquired from the Jackson laboratories. All mice used in these studies
were between 1 and 2 mo of age unless otherwise noted. All experiments were
performed on mice fully backcrossed to C57BL/6J background unless otherwise
noted. All mouse experiments were performed in accordance with the NIH
Guide for the Care and Use of Laboratory Animals and were approved by the
Animal Care and Use Committee of Johns Hopkins University.

Serum and Brain BHB Analysis. Serum and homogenized brain tissue from
Kmt2d+/βGeo and Kmt2d+/+ mice that had been treated with both standard
diet and a KD for 2 wk was assayed for BHB levels using a BHB assay kit
(MAK041; Sigma).

Serum Creatinine and Blood Urea Nitrogen Analysis. Serum creatinine and
blood urea nitrogen are commonly used markers of kidney function. Both
creatinine and blood urea nitrogen levels were measured from serum from
Kmt2d+/βGeo and Kmt2d+/+ mice, using standard clinical assays run at the
Johns Hopkins comparative medicine analysis core.

BHB Injection and Urine Assay. Either 5 mM/kg (R)-(−)-3-hydroxybutyric acid
sodium salt (32–34) (Santa Cruz Biotechnology) or saline was injected (100 μL)
intraperitoneally once or three times a day. (R)-(−)-3-Hydroxybutyric acid so-
dium salt becomes (R)-(−)-3-hydroxybutyric acid in the blood and can in-
terconvert into BHB, the form measured by ketone assays. Therefore, in text
and legends, we used BHB as the label for simplicity. Urine BHB was quantified
by the β-hydroxybutyrate (Ketone Body) Colorimetric Assay Kit (Cayman
Chemical Company). Urine from injected mice was collected ∼1.5–2 h after
injection. Urine from mice on the KD was taken in the early afternoon unless
otherwise stated in the text.

Osmotic Pumps.An Alzet (Durect Co.) microosmotic pump (model 1002) made
to allow for 14 d of diffusion was filled (84-μL reservoir) with either 2.5 mg/mL
(R)-(−)-3-hydroxybutyric acid sodium salt (Santa Cruz Biotechnology) in saline
vehicle or saline vehicle alone. Mice were anesthetized, after which a small
incision was made on the skin of the lower back and the pump was placed
directly under the skin.

Reporter Alleles. HEK 293 cells were transfected with lipofectamine LTX
(Thermo Fisher) with either our H3K4me3 or H4ac reporter alleles that have
been previously described (6). We selected for and maintained stably trans-
fected cells through positive selection with blasticidin at a dose of 10 mg/mL
(Life Technologies). Blasticidin selection was stopped 24 h before exposure
to BHB. For BHB treatment, (R)-(−)-3-hydroxybutyric acid sodium salt (Santa
Cruz Biotechnology) was added to the medium 24 h before FACSVerse flow
sorting (BD Sciences). Data were analyzed using FlowJo (Tree Star Inc.).

Serum Lactate and Pyruvate Analysis. Serum was extracted from whole blood
by centrifugation at 3,500 × g for 10 min after 1 h incubation at room tem-
perature. Subsequently, the supernatant was removed and stored at −20 °C.
Serum samples were then assayed for levels of lactate and pyruvate with the
Lactate Assay Kit (Sigma Aldrich) and Pyruvate Assay Kit (Sigma Aldrich).

Mass Spectrometry for AcAc and BHB. AcAc and BHB were prepared via acid
extraction and BSTFA [N,O-bis(trimethylsilyl)trifluoroacetamide)] derivati-
zation, and detected via gas chromatography–mass spectrometry. The mass
spectrometer was set in SCAN mode to detect all mass fragments in a range
of m/z 50–600. Compounds were identified on the basis of their character-
istic retention time and ion peaks. Results were reported as a ratio of AcAc
to BHB.

Microarray Experiment.Microarray results are based on a joint analysis of two
different experiments. Hippocampi were dissected from wild-type and
Kmt2d+/βGeo mice on a standard diet. In the first experiment, four wild-type
and three Kmt2d+/βGeo mice were profiled, and in the second experiment,
three wild-type and three Kmt2d+/βGeo mice were profiled. RNA was
extracted from whole hippocampi, using the Qiagen RNeasy kit or TRIzol
reagents (Ambion Life Technologies), followed with DNase I treatment
(Qiagen). For microarray, cDNA was synthesized by the JHMI High
Throughput Biology Center, using the SuperScript II RT assay (Thermo Fisher)
following recommended conditions, and hybridized to Affymetrix Mouse
Gene 1.0 microarrays.

Analysis of Microarray Data. The microarray data were preprocessed using the
robust multi-array analysis method (35–37), as implemented in the oligo
package (38) from Bioconductor (39, 40). Unwanted noise was removed
using surrogate variable analysis (41–43) with five surrogate variables. Only
probe-sets of the “core” category were analyzed. After surrogate variable
analysis, data were analyzed using the limma package (44) with an empirical
Bayes variance estimator method (45), and P values were corrected for
multiple testing, using the Benjamini-Hochberg procedure (46).

RT-qPCR Validation. For RT-qPCR validation cDNA was synthesized using the
Applied Biosciences High-Capacity cDNA Reverse Transcription Kit. RT-qPCR
was done on RNA from the same mice used for microarray (n = 3–4 per
group), as well as an additional second cohort treated in an identical fashion
with a KD (n = 5–7 per group). The Taqman probes (Life Technologies) used
were Pld5, Mm00620912_m1, Fam, S; Glp1r, Mm00445292_m1, Fam, S;
Ankfn1: Mm03039417-m1, Fam, S; Kmt2d, Mm01717064-g1, Fam, S, with
Pgk1 and Gapdh as controls (Mm99999915_g1, Vic; Mm00435617_m1, Vic,
S). For Zic5, the available Taqman probe did not yield any data, so we
designed and used a Sybr green assay (Zic5-F: 5′-GAGGCGCTTCCTAGTACTCC-
′3; Zic5-R: 5′-GCTGCTATTGGCAAACTTCCTA-′3 with control gene Tfrc (Tfrc-F:
5′-GAGGCGCTTCCTAGTACTCC-′3; Tfrc-R: 5′-CTTGCCGAGCAAGGCTAAAC-′3).
The two experimental groups were run and normalized to untreated wild-
type and then combined for analysis.

Perfusion, Sectioning, and Staining. Perfusion, cryosectioning, and immuno-
fluorescence staining were performed as previously described (6). EdU (Life
Technologies) in PBS/6% (vol/vol) DMSO (10 mg/mL) injections (50 μg/g/d),
were delivered either for 7 consecutive days, followed by immediate perfusion
(proliferation), or 7 consecutive days of injection and then perfusion on the
30th day after the first injection (survival). For staining, every sixth brain sec-
tion was used, and blocking was done with 5% (mass/vol) BSA. EdU was la-
beled with Click-iT EdU Alexa Fluor 488 Imaging Kit (Thermo Fisher), as well as
DAPI mounting with Vectamount (Vector Laboratories). EdU quantification
was performed blinded to genotype and treatment. Labeled cells were counted
in every sixth slice in the GCL of the DG, and average number per slice was
calculated for each brain. Immunofluorescence was performed with the fol-
lowing primary antibodies: DCX (Santa Cruz Biotechnology; 1:200 goat), tri-
methylated H3K4 (Cell Signaling; 1:500 rabbit), acetylated H3K9, and H3K14
(Cell Signaling; 1:5,000 rabbit). Incubations were performed overnight at 4 °C in
blocking buffer. Previous experiments performed on normal serum from which
the antibodies were derived showed no nonspecific immunoreactivity (6).

Confocal Microscopy. Z-stack images were taken at either 10×, using Zeiss
Axiovert 200 (Carl Zeiss), or 25×, using Zeiss AxioExaminer multiphoton (Carl
Zeiss), with genotypes and treatment blinded to the researcher. Fluores-
cence intensity of the highlighted GCL layer at the midpoint of the z-stack
was measured at 10× magnification, using the Zen software (Carl Zeiss).
Fluorescence intensity of either the H3K4me3 or H3ac antibody was divided
by the DAPI fluorescence intensity to normalize for cell numbers. For ease of
interpretation, values were normalized to Kmt2d+/+ levels. Group compari-
sons were done using a Student’s t test, with significance set at P < 0.05.

DCX Area Measurement. The DCX positive fraction of the GCL was measured
by taking 4× pictures and using the Bezier tool on NS elements 2.0 software
(Nikon) to measure the area of DCX+ cells that expressed DCX, as well as the
entire area of the GCL. The researcher was blinded to mouse genotype and
treatment. The fraction of the GCL that showed DCX+ cells was then calcu-
lated, and group differences were analyzed using a Student’s t test with
significance value set at P < 0.05.

Behavioral Testing. Behavioral testing was conducted on mice between 1 and
2 mo of age and performed and analyzed blinded to genotype and treat-
ment, with all experiments performed in the late morning or early afternoon.
Each particular behavioral test was performed at a consistent time of day. For
open-field testing, Kmt2d+/+ and Kmt2d+/βGeo mice were placed individually
in an open-field chamber (San Diego Instruments) for ten 180-s intervals.
These intervals were combined to give an average activity level, and treat-
ment and genotype groups were compared using a Student’s t test with
significance value set at P < 0.05. For grip strength, mice were allowed to
grab onto the grip strength meter (Columbus Instruments) and were lightly
pulled by the tail with increasing force until releasing their grip. This was
repeated five times for each mouse, with the highest and lowest value being
discarded. The remaining three values were then averaged. Average grip
strength for treatment and genotype groups were compared with a Stu-
dent’s t test with significance value set at P < 0.05. For the MWM, all testing
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was performed in a standard 1.1-m diameter tank filled with room temperature
water stained with white tempera paint (Crayola). The tank had a small plat-
form submerged 2 cm below the water level in the middle of one of the four
tank quadrants. For the first 3 d, the platform had a visible flag on top (flag
training), and each mouse was placed in the tank for four consecutive 60-s trials
in which they were trained to reach the visible platform. During each trial, the
platform was moved to a different quadrant, but the mouse was always en-
tered into the tank in the same location. Latency for each trial for each mouse
was recorded, and if the mouse could not reach the platform in 60 s, they were
placed on the platform. After flag training, the visible flag was removed, and
for 5 d, mice were trained to reach the now hidden platform (hidden platform
training), with four consecutive trials per mouse per day, with a maximum al-
lotment of 60 s per trial. The platform was never moved, but each trial, the
mouse was entered into a different quadrant, with the order of these quad-
rants randomly assigned for each day. On the final day (probe trial), the plat-
form was removed, the mice were allowed to swim for 90 s, and the number of

crossings over the previous location of the platform was measured. For
training and probe tests, data were recorded both manually and electroni-
cally, with ANY-maze software (San Diego Instruments). The four genotype
and treatment groups were analyzed for differences, using a Student’s t test
during the probe trial and with repeated-measures ANOVA within-subjects
test for the latencies.
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